排列与组合

发布时间:2021-11-18 00:49   来源:未知    
字号:

排列的应用:

(1)-般问题的应用:求解排列问题时,正确地理解题意是最关键的一步,要善于把题目中的文字语言翻译成排列的相关术语;正确运用分类加法计数原理和分步乘法计数原理也是十分重要的;还要注意分类时不重不漏,分步时只有依次做完各个步骤,事情才算完成,解决排列应用题的基本思想是:
 
解简单的排列应用问题,首先必须认真分析题意,看能否把问题归结为排列问题,即是否有顺序,如果是,再进一步分析n个不同的元素是指什么以及从n个不同的元素中任取m个元素的每一种排列对应着什么事情,最后再运用排列数公式求解.
(2)有限制条件的排列问题:在解有限制条件的排列应用题时,要从分析人手,先分析限制条件有哪些,哪些是特殊元素,哪些是特殊位置,识别是哪种基本类型,在限制条件较多时,要抓住关键条件(主要矛盾),通过正确地分类、分步,把复杂问题转化为基本问题,解有限制条件的排列问题的常用方法是:
 
常见类型有:①在与不在:在的先排、不在的可以排在别的位置,也可以采用间接相减法;②邻与不邻:邻的用”,不邻的用”;③间隔排列:有要求的后排(插空).

组合应用题

解决组合应用题的基本思想是“化归”,即由实际问题建立组合模型,再由组合数公式来计算其结果,从而得出实际问题的解.
(1)建立组合模型的第一步是分析该实际问题有无顺序,有顺序便不是组合问题.
(2)解组合应用题的基本方法仍然是“直接法”和“间接法”.
(3)在具体计算组合数时,要注意灵活选择组合数的两个公式以及性质的运用.

排列、组合的综合问题:

(1)应遵循的原则:先分类后分步;先选后排;先组合后排列,有限制条件的优先;限制条件多的优先;避免重复和遗漏.
(2)具体途径:在解决一个实际问题的过程中,常常遇到排列、组合的综合性问题.而解决问题的关键是审题,只有认真审题,才能把握问题的实质,分清是排列问题,还是组合问题,还是综合问题,分清分类与分步的标准和方式,并且要遵循两个原则:①按元素的性质进行分类;②按事情发生的过程进行分析.
(3)解排列、组合的综合问题时要注意以下几点:
①分清分类计数原理与分步计数原理:主要看是,还是分步完成;
②分清排列问题与组合问题:主要看是否与序;
③分清是否有限制条件:被限制的元素称为特殊元素,被限制的位置称为特殊位置。
解这类问题通常从以下三种途径考虑:
a.以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;
b.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;
c.先不考虑限制条件,计算出排列或组合数,再减去不合要求的排列或组合数.
前两种叫直接解法,后一种叫间接解法,不论哪种,都应“特殊元素(位置)优先考虑”.
④要特别注意既不要重复,也不要遗漏.

(4)排列、组合应用问题的解题策略:①特殊元素优先考虑,特殊位置优先安排的策略;②合理分类和准确分步的策略;③排列、组合混合问题先选后排的策略;④正难则反,等价转化的策略;⑤相邻问题捆绑处理的策略;⑥不相邻问题插空处理的策略;⑦定序问题除法处理的策略;⑧分排问题直接处理的策略;⑨;⑩构造模型的策略,

文章来源: http://www.sykej.com文章标题: 排列与组合

原文地址:http://www.sykej.com/artl/57.html

上一篇:水轮机课程设计       下一篇:没有了